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Abstract

This paper introduces a new approach for improving the performance and versatility ofLayered Manufacturing
(LM), which is an emerging technology that makes it possible to build physical prototypes of 3D parts directly
from their computer models using a “3D printer” attached to a personal computer.

Current LM processes work by viewing the computer model as a single, monolithic unit. By contrast, the
approach proposed here decomposes the model into a small number of pieces, by intersecting it with a suitably
chosen plane, builds each piece separately using LM, and then glues the pieces together to obtain the physical

✩ A preliminary version of this paper appears in the Proceedings of the Seventh International Workshop on Algorithms and
Data Structures, Providence, RI, 8–10 August 2001, LNCS 2125, pp. 389–400.

* Corresponding author.
E-mail addresses: ilinkin@cs.umn.edu (I. Ilinkin), janardan@cs.umn.edu (R. Janardan), majhi@synopsys.com (J. Majhi),

joerg.schwerdt@algorithmic-solutions.com (J. Schwerdt), michiel@scs.carleton.ca (M. Smid), sriram@cme.nist.gov
(R. Sriram).

1 Research supported, in part, by National Science Foundation grant CCR-9712226 and by National Institute of Standards
and Technology grant 60NANB8D0002. Commercial equipment and software, if any, are identified only in order to adequately
specify certain procedures. In no case does such identification imply recommendation or endorsement by the National Institute
of Standards and Technology, nor does it imply that the materials or equipment identified are necessarily the best available for
the purpose.

2 Portions of this work were done when RJ visited the University of Magdeburg, Germany under a joint grant from the
National Science Foundation and Deutscher Akademischer Austauschdienst for international research.

3 Work done while at the Fakultät für Informatik, Otto-von-Guericke-Universität Magdeburg, 0-39106 Magdeburg, Germany.
Portions of this work done while visiting the University of Minnesota, under a joint grant from DAAD and NSF for international
research.

0925-7721/01/$ – see front matter 2001 Elsevier Science B.V. All rights reserved.
PII: S0925-7721(01)00059-1



118 I. Ilinkin et al. / Computational Geometry 23 (2002) 117–151

prototype. This approach allows large models to be built quickly in parallel. Furthermore, it is very efficient in its
use of so-called support structures that are generated by the LM process.

This paper presents the first provably correct and efficient geometric algorithms to decompose polyhedral models
so that the support requirements (support volume and area of contact) are minimized. Algorithms based on the
plane-sweep paradigm are first given for convex polyhedra. These algorithms run in O(n logn) time for n-vertex
convex polyhedra and work by generating expressions for the support volume and contact-area as a function of the
height of the sweep plane, and optimizing them during the sweep. These algorithms are then generalized to non-
convex polyhedra, which are considerably more difficult due to the complex structure of the supports. It is shown
that, surprisingly, non-convex polyhedra can be handled by first identifying certain critical facets using a technique
called cylindrical decomposition, and then applying the algorithm for convex polyhedra to these critical facets. The
resulting algorithms run in O(n2 logn) time. Also given is a method for controlling the size of the decomposition,
so that the number of pieces generated is within a user-specified limit. Experimental results show that the proposed
approach can achieve significant reduction in support requirements in both the convex and the non-convex case.
 2001 Elsevier Science B.V. All rights reserved.

Keywords: Computational geometry; Cylindrical decomposition; Layered manufacturing; Optimization; Plane sweep; Rapid
prototyping

1. Introduction

The field of computer-aided design and manufacturing has now progressed to the point where an
engineer can not only design and test a virtual model of a 3D part on a personal computer, but can also
generate directly from the model a physical prototype of the part, using a relatively small and inexpensive
“3D printer” attached to the computer [19]. This technology, calledRapid Prototyping (RP), provides the
engineer with an additional level of physical verification that makes it possible to detect and correct
flaws that may, otherwise, have gone unnoticed. RP is used extensively in the automotive, aerospace, and
medical industries.

At the heart of RP is a manufacturing technique calledLayered Manufacturing (LM). The basic
principle underlying LM is simple: the computer model is oriented suitably and sliced into thin layers
by horizontal planes. The layers are then sent over a network to a fabrication device which “prints” them
one by one, each on top of the previous one.

Fig. 1 depicts a widely-used LM process called Stereolithography. In essence, the Stereolithography
Apparatus (SLA) consists of a vat of light-sensitive liquid resin, a platform, and a laser. The input
to the process (and to virtually all other LM processes) is a surface triangulation of the model in the
industry-standard STL format. This format merely consists of an unordered list of the triangles, where
each triangle is specified by listing its three vertices and its outward-directed unit-normal.4 The model is
oriented suitably, sliced by horizontal planes, and then built in the vertical direction as follows: Initially,
the platform is below the surface of the resin at a depth equal to the layer thickness. The laser traces out
the contour of the first slice on the surface and then fills in the interior in a raster-like pattern – a process
calledhatching. The resin then hardens to a depth equal to the slice thickness and forms the first layer,
which rests on the platform. Next, the platform is lowered by an amount equal to the layer thickness, the

4 The simplicity of the STL format has led to its widespread adoption in the LM industry. However, the format does have
some inadequacies and alternative formats have been proposed; see, for instance, [15,26].
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Fig. 1. The stereolithography apparatus.

vacated region is re-coated with resin, and the second layer is then built in the same way. Ideally, each
layer after the first one should rest in its entirety on the previous one. In general, however, portions of a
layer can overhang the previous layer, so additional structures, calledsupports, are needed to hold up the
overhangs. Supports are generated automatically during the process itself. For this the model is analyzed
a priori and a suitable description of the supports is generated and merged into the STL file. Once the
part has been made, it is postprocessed to remove the supports and to improve the surface finish, which
has a stair-stepped appearance owing to the discretization into layers.

1.1. Geometric issues in layered manufacturing

Unfortunately, the time requirements of present-day LM processes is quite high – often running into
hours. Generally, an LM process consists of three phases: preprocessing, building, and postprocessing.
Preprocessing includes repairing flaws in the STL file (e.g., gaps between facets, geometric singularities,
etc. [5,8]), deciding upon a suitable initial orientation for the model (or, equivalently, thebuild direction),
computing support requirements, generating and merging a description of the supports into the STL
file, and slicing the model and supports. The building phase involves tracing and hatching each layer.
Postprocessing includes removal of supports and improving part finish and accuracy.

All of these tasks are influenced by geometric considerations [5,17]. In particular, the orientation of the
part impacts the number of layers, the quantity of supports, the location of supports on the part, the extent
to which supports “stick” to the part, and the surface finish and accuracy. The layer geometry affects the
tool-path during hatching. The STL representation is not well suited for the efficient computation of
slices and supports as it does not contain any topological information about the model.

In current systems these issues are resolved in an ad hoc manner, through human intervention. For
instance, the part is oriented by the operator, based on experience, so that the quantity of supports used
is “small” and the finish is “good”. However, over the past few years the problem of automating these
decisions via efficient and correct algorithms has been addressed by several researchers in computational
geometry.

Asberg et al. [3] (see also [9]), describe efficient algorithms to decide if a given model can be built
without supports using Stereolithography. Majhi et al. [25] give algorithms to minimize the volume of
supports and the area of contact between supports and the part for convex polyhedra, and show how to
minimize the stair-step error for non-convex polyhedra. They also show how to reconcile multiple design
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criteria simultaneously [23] and give support optimization algorithms for non-convex polygons [24]. (See
also [22].) Schwerdt et al. show how to choose a build direction that protects prescribed facets from being
damaged by supports [30] and to minimize the number of layers [31]. Recently, Agarwal and Desikan [1]
have given an efficient algorithm to approximate a build direction which minimizes the contact-area for
a convex polyhedron. Johnson [20] shows how to compute support descriptions efficiently for a given
build direction and McMains and Séquin [27] show how to slice a model efficiently using the plane
sweep paradigm. Barequet and Kaplan [6] describe the design of a software front-end for automating
many process planning functions in LM.

There has also been substantial effort from the computer-aided design community, which is primarily
experimental/heuristic in nature. Representative work here includes that of Frank and Fadel [17] who
consider support optimization in the framework of an expert system, Bablani and Bagchi [4] who were
the first to quantify the notion of stair-step error, Allen and Dutta [2] who give heuristics for minimizing
support contact-area, Bøhn [8] who addresses the problem of automatic repair of computer models, and
Kulkarni and Dutta [21] and Dolenc and Mäkelä [14] who consider the problem of slicing with variable
layer thicknesses to capture fine detail in the model. The special issue by Stucki et al. [32], contains a
wealth of information on commercial and university-based work in RP and LM.

1.2. A decomposition-based approach

All the process-planning algorithms for LM that we are aware of work by viewing the model as a
single, monolithic unit. By contrast, the approach that we propose works by decomposing the model
into a small number of pieces, building each piece separately using LM, and then gluing the built pieces
together to obtain the physical prototype. (The number of pieces generated can be controlled by the
user.) Specifically, given a decomposition direction, we decompose the model by intersecting it with a
suitable plane perpendicular to this direction; we then build the pieces that lie in the same halfspace in
the direction given by the normal to the plane that is contained in the halfspace. Fig. 2 illustrates this (in
2D, for convenience).

The decomposition-based approach has the advantage that it allows the construction of large models
that cannot be accommodated in the workspace as a single piece. Moreover, the model can be built rapidly
by building the pieces in parallel. Speed is particularly important in the “look and feel” prototyping that
is the dominant use of RP today, since the goal here is to quickly get into the hands of the designer a
physical version of the model to assess its general feel and appearance, and to rapidly iterate on the design
until it is acceptable. In this context, the potential disadvantages of the decomposition-based approach
(i.e., inaccuracies that may result from manually gluing the pieces together and reduced strength across
the glued sections) are offset by the ability to build large models quickly in parallel.

A less obvious, but nevertheless crucial, advantage is that the support requirements of the decompo-
sition-based approach are often much less than those of the conventional approach.5 For instance, if a
hollow sphere is built the conventional way, supports will be needed in the interior void and below the
lower hemisphere; however, if it is built as two hemispheric shells, in opposite directions, then supports
will be needed only in the regions previously occupied by the void, which results in an overall reduction
in both support volume and contact-area. Our experiments confirm substantial savings for various other

5 They can never be more, since the conventional approach corresponds to the special case where the decomposition plane
coincides with the platform.
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Fig. 2. The decomposition-based approach, shown in 2D for convenience. The polyhedronP is decomposed by a planeH into
polyhedraP+ andP−, which are then built in the indicated directions.

models as well. Reducing support requirements is important because this translates into lower material
costs and faster build times.

1.3. Contributions

We give the first provably correct and efficient geometric algorithms to decompose polyhedral (i.e.,
STL) models, with respect to a given decomposition direction, so that the support contact-area and,
independently, the support volume is minimized. We formalize this problem in Section 2. In Sections 3
and 4, we consider convex polyhedra and devise efficient, plane-sweep-based algorithms. We show how
to generate expressions for the support volume and contact-area as a function of the height of the sweep
plane, and how to optimize them during the sweep. We discuss our implementation of these algorithms
and the results of our experiments on convex polyhedra with up to 200,000 vertices.

It may be argued (quite reasonably) that real-life models are generally not convex, so the direct
relevance of the above algorithms is somewhat limited. Our original motivation for considering convex
polyhedra was to get a handle on the problem for the non-convex case, which is considerably more
difficult because of the complex structure of the supports (see Fig. 3). Indeed, we will see that our
approach for the convex case is one of the key building blocks to our solution for the non-convex case.
In Section 5, we show how to handle non-convex polyhedra by first identifying certain critical facets
(or parts thereof ) using a technique called cylindrical decomposition [29]. It turns out that the problem
can then be solved by applying to these critical facets the algorithm developed for the convex case. We
also give experimental results for typical non-convex polyhedra. Another key problem encountered in the
non-convex case (but not in the convex case) is to keep small the number of pieces in the decomposition.
We give an efficient technique for controlling the size of the decomposition of non-convex polyhedra, so
that the number of pieces generated is within a user-specified limit.

To the best of our knowledge, the only prior work related to this approach is due to Fekete and
Mitchell [16]. They consider the problem of decomposing a polyhedron into special polyhedra called
histograms, which can be built on certain “base” facets with no supports. They prove that deciding if a
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polyhedron of genus zero can be decomposed intok histograms is NP-complete (this is true even in two
dimensions for a polygon with holes). Our work differs from [16] in that we seek a decomposition (with
respect to a given direction) into two polyhedra for which the total support requirement is minimized, but
not necessarily zero.

2. Formalizing the problem

We denote byP the polyhedron of interest. We assume the facets ofP are triangles and that its
boundary is represented in some standard form, such as, for instance, a doubly-connected edge list [13] or
a winged-edge structure [7]. (If necessary, such a representation can be computed easily from the standard
STL representation ofP [27].) Let d be a givendecomposition direction (a unit-vector); we assume,
without lost of generality, thatd coincides with the positivez direction. LetH be any plane perpendicular
to d and intersectingP ; we callH thedecomposition plane. Let P+ be the closed polyhedron bounded
by the facets ofP (or portions thereof ) that are aboveH , and by the facetP ∩H . (Note thatP+ may
consist of more than one connected component.) If no part ofP lies strictly aboveH , thenP+ is taken
to be empty. DefineP− symmetrically with respect to the portion ofP that is belowH . (FacetP ∩H

appears in bothP+ andP−, with outward normals−d andd , respectively.) We define thebuild direction
for P+ to bed and forP− to be−d, and we takeH to be theplatform for both polyhedra.

Let f be any facet ofP . We classifyf , with respect to the given decomposition directiond , as afront
facet, a back facet, or aparallel facet of P depending on whether the angle between the decomposition
directiond and the outward unit-normal,nf , of f is less than, greater than, or equal to 90◦, respectively.
(Note thatf may be completely withinP+ or P−, or may be partially inP+ and partially inP−.
However, since the classification is done with respect to the fixed decomposition direction, rather than
the build directions forP+ andP−, f has the same classification inP+ and/orP− as it does inP .)

We now formalize the notion of supports. A facet of a polyhedron will need to be supported iff the
angle between its outer normal and the build direction of the polyhedron is greater than 90◦. This implies
that the back facets ofP+ and the front facets ofP− will need to be supported. For concreteness, consider
a back facetf of P+. Thesupport polyhedron for f is the closure of the set of all pointsp ∈ R

3 such
that p is not in the interior ofP+ and the ray shot fromp in direction d first entersP+ throughf .
Informally, the support polyhedron off is bounded from above byf , on the sides by vertical facets that

Fig. 3. Support structures (in light shading), shown in 2D for convenience. Supports in the non-convex case (left) exhibit
complexities not seen in the convex case (right): (i) they can rest partially on other parts of the polyhedron; (ii) only a fraction
of a facet may be in contact with supports; (iii) parallel facets can also be in contact with supports.
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“drop down” from the edges off , and from below by the platform and/or portions of front facets ofP+.
(If P+ is convex, then it is bounded from below by only the platform.) See Fig. 3 for an example in 2D.

The support contact-area for P+ is the total surface area ofP+ that is in contact with supports. It
includes the area of all the back facets ofP+, exceptP ∩H , and the areas of those portions of front facets
and parallel facets that are in contact with supports. (FacetP ∩H rests on the platform and hence needs
no supports. Note that while back facets are completely in contact with supports, front and parallel facets
may be only partially in contact.) Thesupport volume for P+ is the total volume of the support polyhedra
for all back facetsf of P+ (excludingP ∩H ). A symmetric discussion applies to the polyhedronP−.

We are now ready to state formally the problem that we wish to solve.

Problem 2.1. Given a polyhedronP , with n vertices, and a decomposition directiond, compute a plane
H perpendicular tod which decomposesP into polyhedraP+ andP− (as defined above) such that the
total support contact-area or support volume is minimized whenP+ andP− are built in directionsd and
−d , respectively. Additionally, if the user specifies an integerK , then the planeH should be optimal
over all planes that generate no more than a total ofK connected components ofP+ andP−.

3. Decomposing a convex polyhedron to minimize contact-area of supports

In this section and in Section 4, we assume thatP is convex. ThusP+ andP− are both convex and
the support polyhedron for a back facet ofP+, or a front facet ofP−, extends from the facet all the way
to the platform, without intersecting any other facet (Fig. 3). Furthermore, parallel facets will not be in
contact with supports.6 These properties lead to an efficient algorithm for Problem 2.1, which we then
incorporate into a solution for non-convex polyhedra.

Our approach is based on sweeping the planeH upwards starting from thexy-plane (we assume
without lost of generality, thatP lies above thexy-plane). LetH currently be at heighth above the
xy-plane and letf be any facet ofP . We classifyf as an active or an inactive facet with respect toH

depending on whether or notf is cut byH . Intuitively, an inactive facet is completely contained inP+
or P− and its contribution to the contact-area is not affected by small “local” movements ofH . On the
other hand, an active facet is contained partially inP+ and partially inP−, and small movements ofH
affect the facet’s contribution to the contact-area. Formally, we callf anactive facet with respect to H
if H ∩ f �= ∅ and at least one vertex off is strictly aboveH . Otherwise, we callf aninactive facet with
respect to H .

It follows that if f is an inactive front facet then its contribution to the total contact-area isarea(f )
if it is in P−, and zero if it is inP+, wherearea(f ) is the area off . If f is an active front facet, then
only the part,f −, of f that lies belowH is in P−, sof contributesarea(f −) to the total contact-area.
Symmetrically, iff is an inactive back facet, then its contribution to the total contact-area isarea(f ) if
it is in P+, and zero if it is inP−. If f is an active back facet, then only the partf + of f that lies above
H is in P+, sof contributesarea(f +) to the total contact-area.

The expression for the total contact-area ofP+ andP− consists of two terms: theinactive-area term,
which is the contact-area contributed by the inactive facets, and theactive-area term, which is the contact-
area contributed by the active facets. If we moveH up or down, without crossing a vertex, then the

6 Indeed, all references to facets in this section and in Section 4 mean non-parallel facets.
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Fig. 4. Intersection ofH and active front facetf .

inactive-area does not change, since inactive facets become active, and vice versa, only whenH crosses
a vertex. Therefore, the inactive-area term is simply a real number. However, the active-area changes
because the fraction of an active facet that contributes to the total contact-area changes asH is moved.
Lemma 3.1 below shows that the active-area term is a quadratic expression inh.

Lemma 3.1. Let the plane H be at height h above the xy-plane. The total contact-area contributed by
the active facets (i.e., the active-area) is of the form Ah2 + Bh+C, where the coefficients A, B , and C
depend only on the coordinates of the vertices of the active facets.

Proof. Let f be any active facet, with verticesvi = (xi, yi, zi), vj = (xj , yj , zj ), andvk = (xk, yk, zk)

(Fig. 4). We will prove that the contact-area contributed byf is of the formaf h2 + bf h+ cf , where the
coefficientsaf , bf , andcf depend only on the coordinates of the vertices off . This implies the result.

Note that by definition of an active facet,f is not contained inH . Without lost of generality, assume
thatf is a front facet, thatzi < zj � zk , and thatH intersectsf betweenvi andvj . (The other cases are
similar and are discussed at the end of the proof.) LetH intersect edgevivj at vij = (xij , yij , zij ) and
edgevivk at vik = (xik, yik, zik). We compute these intersection points as follows.

Let �ij and�ik be the lines containingvivj andvivk , respectively. For real-valued parameterst andr ,
the equations of these two lines are:

�ij : x = xi + (xj − xi)t, y = yi + (yj − yi)t, z= zi + (zj − zi)t,

and

�ik: x = xi + (xk − xi)r, y = yi + (yk − yi)r, z= zi + (zk − zi)r.

Sincezij = zik = h, the parameterst andr are given by

t = h− zi

zj − zi
, r = h− zi

zk − zi
.

Letαj = (xj −xi)/(zj −zi), αk = (xk −xi)/(zk −zi), βj = (yj −yi)/(zj −zi), andβk = (yk −yi)/(zk −
zi). Then it follows that

xij = xi + αj(h− zi), yij = yi + βj(h− zi)



I. Ilinkin et al. / Computational Geometry 23 (2002) 117–151 125

and

xik = xi + αk(h− zi), yik = yi + βk(h− zi).

Let f − be the part off belowH ; f − is a triangle with verticesvi , vij , andvik . Then

2 · area(f −)= ∣∣(vij − vi)× (vik − vi)
∣∣,

wherevij − vi = αj(h− zi)i +βj (h− zi)j + (h− zi)k andvik − vi = αk(h− zi)i +βk(h− zi)j + (h−
zi)k, and| · | denotes the length of the associated vector. Therefore,

(vij − vi)× (vik − vi) =
∣∣∣∣∣∣

i j k
αj(h− zi) βj (h− zi) (h− zi)

αk(h− zi) βk(h− zi) (h− zi)

∣∣∣∣∣∣
= (h− zi)

2(βj − βk)i − (h− zi)
2(αj − αk)j + (h− zi)

2(αjβk − αkβj )k.

It follows that

area(f −)= 1

2
(h− zi)

2
(
(βj − βk)

2 + (αj − αk)
2 + (αjβk − αkβj )

2
)1/2

.

The coefficient of(h− zi)
2 above is a constant which depends only on the coordinates of the vertices

of f . In fact, it is easy to verify that this constant is equal toarea(f )/((zj − zi)(zk − zi)). Hence the
contribution off to the active-area term is of the formaf h2 + bf h+ cf , as claimed.

If zi = zj or if H intersectsf betweenvj and vk , then f − is a quadrilateral andarea(f −) =
area(f )−area(f +), wheref + is the part off aboveH . Sincef + is a triangle, its area can be written as
a quadratic expression similar to the one above. Moreover,area(f ) is a constant. It follows thatarea(f −)
is of the claimed form. Finally, iff is a back facet, then a symmetric discussion applies.

Summing the area contributions of all active facets gives the lemma.✷
Remark 3.1. Note that the coefficientA in Lemma 3.1 is the sum of coefficientsaf for those active
facetsf that contribute triangular areas to the total contact-area minus the sum of coefficientsag for
those active facetsg that contribute quadrilateral areas to the total contact-area. Therefore, it is possible
thatA= 0. Similarly, it is also possible thatB = 0. In fact, the following example shows thatA andB
can be zero simultaneously.

Let P be a cube which has been sheared by a small amount in the positivey direction. That is, if we
view P from the positivex-axis, then the top and bottom facets are parallel to thexy-plane, the front and
back facets are parallel to theyz-plane, and the left and right facets are parallel but slanted rightwards.
LetF andG be the left and right facets, respectively. SplitF into trianglesf andf ′ andG into triangles
g andg′. Let f be the triangle ofF with one vertex at the bottom and two at the top, and letg be the
similar triangle ofG. Note thatarea(f ) = area(g), and, with respect to the positivez decomposition
direction,f is a front facet andg is a back facet. Letzi , zj , andzk (= zj ) be thez-coordinates of the
bottom, middle, and top vertices off (andg).

Let H be anywhere betweenzi andzj . Thenf ’s contribution to the contact-area is a triangle whose
area is(h − zi)

2area(f )/((zj − zi)(zk − zi)), and g’s contribution is a quadrilateral whose area is
area(g)− (h− zi)

2area(g)/((zj − zi)(zk − zi)). Therefore, the total contribution off andg is simply
area(g). A symmetric discussion shows that the total contribution off ′ andg′ is area(f ′). It follows that
the total contact-area ofP for this position ofH is a constant equal toarea(g)+area(f ′), i.e.,A= B = 0.
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In the algorithm to follow, we will need to optimize the active-area formula over a certain range ofh

for which it is valid. We will show there how to handle these special cases.

3.1. The algorithm

We sweep the planeH upwards, starting at the lowest vertex ofP . We stop at each vertex and update
the inactive-area and the active-area terms, based on the facets incident to the current vertex. We then
minimize the active-area term (hence the total contact-area) as the position,h, of H ranges between
the z-coordinates of the current vertex and the next one. This gives the optimal position forH between
successive vertices. We repeat this for all vertices to find the globally-best position forH .

Here is the algorithm in more detail:

• In a preprocessing step, we sort the vertices ofP according to non-decreasingz-coordinates, asv1,

v2, . . . , vn (ties are broken arbitrarily). For each facetf ∈ P , we determine whether it is a front, a
back, or a parallel facet, and also computearea(f ). We set the active-area term identically equal to
zero and the inactive-area term equal to the total area of the back facets. We set the current minimum
contact-area equal to the sum of these two terms. We then scan the vertices in their sorted order.

• Let v� be the current vertex, 1� � < n. For each facetf incident tov�, we do the following:
Case 1: v� is the lowest vertex of f . (Thus,f changes from inactive to active atv�.) If f is a

back facet, then we subtractarea(f ) from the inactive-area term. Using Lemma 3.1, we
compute and add the expressionaf h2 + bf h+ cf to the active-area term, thereby including
the contribution off + to the total contact-area whenH is betweenz� andz�+1. If f is a
front facet, then we update only the active-area term to include the contribution off − to the
total contact-area.

Case 2: v� is the highest vertex of f . (Thus,f changes from active to inactive atv�.) This case is
symmetric to Case 1. That is, iff is a back facet then we use Lemma 3.1 to compute and
subtract the expressionaf h2 + bf h+ cf from the active-area term, thereby removing the
contribution off + to the total contact-area whenH is betweenz� andz�+1. If f is a front
facet, then we update the active area term to remove the contribution off −, and we add
area(f ) to the inactive-area term.

Case 3: v� is the middle vertex of f . Heref continues to be active, but the active-area term must be
updated sinceH intersects a different edge off abovev� than it did below. We perform this
update using Lemma 3.1.

After one of the three cases above is executed for all facetsf incident tov�, we have a new active-
area termAh2 + Bh+ C, which is valid forh in the interval[z�, z�+1]. We can minimize this term
using standard techniques from calculus: IfA �= 0, then the minimum is attained ath = −B/2A if
−B/2A ∈ [z�, z�+1], and ath= z� or ath= z�+1 otherwise. IfA= 0 andB �= 0, then the minimum
is attained at eitherh= z� or ath= z�+1. If A= B = 0, then the active-area is constant in[z�, z�+1],
so we (arbitrarily) pickz� as the “optimum” value ofh. In any case, once the optimumh has been de-
termined, we compute the total contact-area for thish and update the current minimum contact-area,
if necessary.

Theorem 3.1. The contact-area version of Problem 2.1 can be solved in O(n logn) time for a convex
polyhedron P with n vertices (O(n) time if the vertices are given in sorted order in the decomposition
direction d).
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Proof. The correctness of the algorithm follows from the earlier discussion. The initialization time is
dominated by the O(n logn) time to sort the vertices. At each vertexv�, the incident faces can be accessed
in constant time apiece, sinceP is given as a doubly-connected edge list. The time to update the active-
area and inactive-area terms is proportional to the degree ofv�. The minimization of the active-area
term takes constant time. Summing over all vertices, the sweep time is O(n) since the sum of the vertex
degrees inP is O(n). The claimed time bound follows.✷
3.2. Experimental results

We have implemented the above algorithm and tested it on several convex polyhedra. The program is
written in C++, and performs floating point computations in double-precision. The tests were done on a
SUN Ultra 10 Sparc machine with 256 MB of main memory and a 440 MHz processor.

We generated two classes of test polyhedra. For the first class, we generated for eachn, a set ofn
points at random on a sphere of radius 100 centered at the origin. (In our experiments,n ranged from
20,000 to 200,000, in steps of 20,000.) We then computed the convex hull of thesen points using the
qhull program [10], and used it as our test polyhedron. (Since then points were in convex position, all
of them appeared on the convex hull. Also, we set the parameters toqhull such that it did not merge
coplanar facets; thus all facets were triangles.) Table 1 shows the running times of our program and the
minimum contact-area computed. To illustrate the savings realized by decomposition, we also computed
the contact-area without decomposition in each case.

Table 1
Minimum support contact-area for convex polyhedra generated from random
points on a sphere of radius 100. Here “non-decomp. contact-area” refers to
the support contact-area when the polyhedra are built without decomposi-
tion; observe the significant reductions achieved via decomposition. Note
that the support contact-area without decomposition is roughly equal to the
area of the lower hemisphere, as it should be

Support contact-area

#verts min hmin run time non-decomp.
n contact-area (s) contact-area

20,000 579.0 −0.14 0.6 62,708.1

40,000 424.2 0.04 1.2 62,832.6

60,000 338.6 −0.04 2.0 62,803.7

80,000 286.6 −0.05 2.7 62,802.5

100,000 274.6 0.02 3.5 62,840.0

120,000 243.6 0.05 4.2 62,864.0

140,000 226.4 0 5.0 62,824.7

160,000 211.6 −0.01 5.8 62,833.2

180,000 191.2 0.03 6.5 62,845.1

200,000 174.7 −0.02 7.4 62,814.9
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Table 2
Minimum support contact-area for convex polyhedra generated from random points on a
cone; each polyhedron has been rotated by the indicated angle to make it non-symmetric
about the origin. Here “non-decomp. contact-area” refers to the support contact-area
when the polyhedra are built without decomposition; observe the significant reductions
achieved via decomposition

Support contact-area

#verts angle min hmin mean run non-decomp.
n contact-area time (s) contact-area

20,001 200 7,752.6 −3.2 0.6 55,300.5

37 11,705.0 2.3 57,111.7

40,001 40 12,193.1 2.7 1.3 58,304.3

75 3,973.7 0.7 52,005.6

60,001 240 7,037.8 −0.5 2.0 55,082.1

112 5,315.5 −0.5 55,068.2

80,001 80 2,714.5 0 2.8 52,272.1

150 10,108.5 −1.5 51,825.6

10,0001 280 2,649.1 0 3.6 52,160.8

187 3,447.8 −3.6 59,820.0

120,001 120 7,018.4 −0.2 4.3 55,068.5

225 11,908.1 −1.0 49,168.8

140,001 320 12,209.7 1.2 5.1 58,237.1

263 1,967.0 0.1 54,011.3

160,001 160 7,657.2 −2.1 5.9 55,325.7

300 6,962.6 0.2 51,425.1

180,001 0 5.0 1.7 6.7 44,798.2

338 8,175.7 1.5 51,938.3

200,001 200 7,625.8 −2.1 7.5 55,297.5

15 6,198.2 3.4 49,509.5

As one might expect, the test polyhedra generated above were quite symmetric about the origin. As a
result, the optimum decomposition plane was always close to thexy-plane. Therefore, we also generated
a second set of polyhedra that did not exhibit such symmetry. For this, we usedqhull to generaten+ 1
points at random on a cone whose major axis was along thez-axis, forn in the range 20,000–200,000
(the additional point was the apex of the cone). We then rotated the cone by a randomly chosen angle to
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make it non-symmetric about the origin. For eachn, we generated two non-symmetric test polyhedra in
this fashion. Table 2 shows our results; here “angle” refers to the angle by which the cone was rotated.
For each input size, the running times on the two polyhedra were nearly the same; therefore, we averaged
the times. This closeness in run times is to be expected since the complexity of the algorithm depends
primarily on the graph structure ofP , which is the same regardless of orientation. In fact, since the graph
is fully triangulated, the number of edges and faces are the same for different polyhedra with the same
number of vertices. This is borne out by Tables 1 and 2.

3.3. Discussion

One might wonder if there is always an optimal solution where the planeH passes through a vertex
of P , thus obviating the need to minimize the active-area formula in between successive vertices. In this
section, we show that this is not the case by proving that for the pyramidP of Fig. 5 the optimal plane
does not contain any vertex.

In what follows, we will use the notation〈vi, vj , vk〉 to denote a facet (triangle) ofP that is bounded
by verticesvi, vj , andvk .

It is easy to verify that

2 · area
(〈v1, v3, v2〉

)= ∣∣(v3 − v1)× (v2 − v1)
∣∣= √

6,

2 · area
(〈v1, v2, v4〉

)= ∣∣(v4 − v1)× (v2 − v1)
∣∣= √

6,

2 · area
(〈v2, v3, v4〉

)= ∣∣(v3 − v2)× (v4 − v2)
∣∣= √

8.

Note that facet〈v1, v3, v4〉 is a parallel facet for the indicated decomposition directiond , and, therefore,
does not contribute to the contact-area.

We now compute the total contact-area forP+ andP− for each decomposition planeH that passes
through a vertex ofP .

Fig. 5. A polyhedron for which the decomposition plane realizing the minimum contact-area does not pass through a vertex.
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Case 1. H passes through v1, i.e., H is the plane z= −1.
In this case,P− is empty and the (active) back facets〈v1, v3, v2〉 and 〈v1, v2, v4〉 contribute
area(〈v1, v3, v2〉) andarea(〈v1, v2, v4〉), respectively, to the contact-area forP+. Therefore, the
total contact-area is

√
6/2+ √

6/2= 2.449.
Case 2. H passes through v2, i.e., H is the plane z= 0.

Let H intersect edgesv1v3 and v1v4 at points v13 and v14, respectively. We havev13 =
(0.5,0,0) and v14 = (−0.5,0,0). There are no facets that contribute to the contact-area for
P−. The (active) back facets〈v1, v3, v2〉 and 〈v1, v2, v4〉 contribute area(〈v2, v13, v3〉) and
area(〈v2, v4, v14〉), respectively, to the contact-area forP+. We have

2 · area
(〈v2, v13, v3〉

)= ∣∣(v13 − v2)× (v3 − v2)
∣∣= √

1.5,

2 · area
(〈v2, v4, v14〉

)= ∣∣(v14 − v2)× (v4 − v2)
∣∣= √

1.5.

Therefore, the total contact-area is
√

1.5/2+ √
1.5/2= 1.225.

Case 3. H passes through v3 (and v4), i.e., H is the plane z= 1.
HereP+ is empty. Only the (inactive) front facet〈v2, v3, v4〉 contributes to the contact-area for
P−. Its contribution isarea(〈v2, v3, v4〉)= √

2= 1.414, which is also the total contact-area.

Now, letH be the planez= 0.5. This plane does not pass through any vertex ofP . We will show that
the total contact-area for this plane is smaller than any of the contact-areas computed in Cases 1–3 above.

LetH intersect edgesv1v3, v1v4, v2v3, andv2v4 at pointsv13, v14, v23, andv24, respectively. We have
v13 = (0.75,0,0.5), v14 = (−0.75,0,0.5), v23 = (0.5,−0.5,0.5), andv24 = (−0.5,−0.5,0.5).

Facet〈v2, v3, v4〉 is a (active) front facet and contributesarea(〈v2, v23, v24〉) to the contact-area for
P−. Facets〈v1, v3, v2〉 and 〈v1, v2, v4〉 are (active) back facets, and contributearea(〈v23, v13, v3〉) and
area(〈v14, v4, v24〉), respectively, to the contact-area forP+. We have

2 · area
(〈v2, v23, v24〉

)= ∣∣(v23 − v2)× (v24 − v2)
∣∣= 1√

2
,

2 · area
(〈v23, v13, v3〉

)= ∣∣(v23 − v3)× (v13 − v3)
∣∣=

√
1.5

4
,

2 · area
(〈v14, v4, v24〉

)= ∣∣(v14 − v4)× (v24 − v4)
∣∣=

√
1.5

4
.

Thus, the total contact-area is(1/2)1/
√

2+ (1/2)
√

1.5/4+ (1/2)
√

1.5/4= 0.660, which is less than
any of the contact-areas computed in Cases 1–3. This proves that the decomposition plane that realizes
the minimum contact-area need not pass through any vertex ofP . It turns out that, for this example, the
optimal plane isH : z= 0.46, and the corresponding total contact-area is 0.656. (This was computed by
our program in Section 3.2.)

4. Decomposing a convex polyhedron to minimize volume of supports

In this section, we describe an algorithm to decomposeP such that when the resulting polyhedra
P+ andP− are built in directionsd and−d , respectively, the total volume of supports is minimized.
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Each support polyhedron forP+ is bounded from above by a back facet, on the sides by vertical edges
emanating from the edges of the facet, and from below by the decomposition planeH . A symmetric
discussion applies forP−.

For any given decomposition planeH : z = h, the expression for the support volume consists of two
terms. Theinactive-volume term and theactive-volume term, which are, respectively, the total volumes
of the support polyhedra contributed by the inactive and the active facets. If we moveH up or down
without crossing a vertex, the active-volume as well as the inactive-volume changes (unlike contact-area,
where only the active-area changes). Lemma 4.1 below proves that the active-volume term is cubic inh,
and Lemma 4.2 shows that the inactive-volume is linear inh.

Lemma 4.1. Let the plane H be at height h above the xy-plane. The total support volume contributed
by the active facets (i.e., the active-volume) is of the form Ah3 + Bh2 + Ch+D, where the coefficients
A, B , C, and D depend only on the coordinates of the vertices of the active facets.

Proof. Let f be any active facet, with verticesvi = (xi, yi, zi), vj = (xj , yj , zj ), andvk = (xk, yk, zk),
wherezi < zj , zi < zk and let the verticesvi , vj , andvk be in counterclockwise order when viewed
from the outside ofP (i.e., (vj − vi) × (vk − vi) has the same direction as the outward unit-normal,
nf , to f ). Clearly, it suffices to prove that the support volume contributed byf is of the form
af h

3 + bf h
2 + cf h + df , where the coefficientsaf , bf , cf , anddf depend only on the coordinates

of the vertices off .
Note that, by definition of an active facet,f is not contained inH . Assume thatH intersects edges

vivj andvivk , so thatf − is a triangle andf + is a quadrilateral. (The other cases are similar and are
discussed at the end of the proof.) Iff is a front facet, then it contributes a support polyhedron only to
P−, whereas iff is a back facet, then it contributes a support polyhedron only toP+. Let us denote this
support polyhedron byRf . Let v′

i , v
′
j , andv′

k be the vertical projections ofvi , vj , andvk , respectively, on
H . If f is a front facet, thenRf is defined by the verticesvi , v′

i , vij , andvik (Fig. 6); if f is a back facet,
thenRf is defined by the verticesvij , vik , v′

j , v
′
k , vj , andvk (Fig. 7). Our goal is to find a formula for the

volume,vol(Rf ), of Rf in each case.
Let Sj , 1� j � r be the facets ofRf , for some positive integerr . Let N j be the outward unit-normal

to Sj (“outward” with respect toRf , notP). LetQj be any point onSj and letQj be the position vector
of Qj . From [18] we have

vol(Rf )= 1

3

∣∣∣∣∑
j

(Qj · N j )area(Sj )

∣∣∣∣. (1)

We next consider the two possibilities forf separately.

Case 1. f is a front facet of P (Fig. 6).
In this caseRf is bounded by the following facets:

S1: 〈vi, vij , v′
i〉

S2 = f −: 〈vi, vik, vij 〉
S3: 〈vi, v′

i , vik〉
S4: 〈v′

i , vij , vik〉
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Fig. 6. The support polyhedron,Rf , contributed by an active front facetf . Rf is defined by the verticesvi , v
′
i
, vij , andvik .

Table 3

Facet PointQj NormalNj

S1 vi (vj − vi )× d/|(vj − vi )× d|
S2 vi −nf

S3 vi d × (vk − vi )/|d × (vk − vi )|
S4 v′

i
d

Table 3 showsN j and the pointQj for each facetSj . We have chosenQj such that subsequent
calculations become simple.

Note that all the dot productsQj · N j , except forQ4 · N4, depend only onf (andd , which is fixed);
the dot productQ4 · N4 = h. We now generate an expression for eacharea(Sj ).

Expression for area(S1):
Consider the vertical projection,v′′

i , of vi on the plane passing throughvj and parallel toH .7

FacetS1 is simply the triangular portion of〈vi, vj , v′′
i 〉 lying below H . From the proof of

Lemma 3.1

area(S1)= (h− zi)
2 · area(〈vi, vj , v′′

i 〉)
(zj − zi)(zj − zi)

,

7 To avoid clutter, we do not showv′′
i

in Fig. 6.
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wherearea(〈vi, vj , v′′
i 〉)= |(vj − vi)× (v′′

i − vi )|/2, andv′′
i − vi has components(0,0, zj − zi).

It follows thatarea(S1) can be written in the form

area(S1)= a
(1)
f h2 + b

(1)
f h+ c

(1)
f , (2)

for some coefficientsa(1)f , b(1)f , andc(1)f that depend only on the coordinates of the vertices off .

Expression for area(S2):
From the proof of Lemma 3.1 it is immediate that

area(S2)= a
(2)
f h2 + b

(2)
f h+ c

(2)
f , (3)

for some coefficientsa(2)f , b(2)f , andc(2)f that depend only on the coordinates of the vertices off .

Expression for area(S3):
The discussion here is identical to the one forarea(S1), except that we use the vertical projection,
v′′′
i , of vi on the plane passing throughvk and parallel toH . Therefore,

area(S3)= (h− zi)
2 · area(〈vi, vk, v′′′

i 〉)
(zk − zi)(zk − zi)

,

wherearea(〈vi, vk, v′′′
i 〉) = |(vk − vi )× (v′′′

i − vi)|/2, andv′′′
i − vi = (0,0, zk − zi). It follows

thatarea(S3) can be written in the form

area(S3)= a
(3)
f h2 + b

(3)
f h+ c

(3)
f , (4)

for some coefficientsa(3)f , b(3)f , andc(3)f that depend only on the coordinates of the vertices off .

Expression for area(S4):
Now, area(S4) is simply the area of the projection off − onH , and is hence equal toarea(f −)
times the cosine of the angle betweenH and the plane containingf −. Therefore,area(S4) =
area(f −)(nf · d).
Recall from the proof of Lemma 3.1 thatarea(f −) is quadratic inh. It follows thatarea(S4) can
be written in the form

area(S4)= a
(4)
f h2 + b

(4)
f h+ c

(4)
f , (5)

for some coefficientsa(4)f , b(4)f , andc(4)f that depend only on the coordinates of the vertices off .

Let us denote byactive-volumef (h) the support volume contributed by an active facetf with respect
to the planeH : z= h. From Eqs. (2)–(5) and the fact thatQ4 · N4 = h, we have

active-volumef (h) = 1

3

∣∣∣∣∣
4∑

j=1

(Qj · N j )
(
a
(j)

f h2 + b
(j)

f h+ c
(j)

f

)∣∣∣∣∣
= 1

3

∣∣∣∣∣
3∑

j=1

(Qj · N j )
(
a
(j)

f h2 + b
(j)

f h+ c
(j)

f

)+ h
(
a
(4)
f h2 + b

(4)
f h+ c

(4)
f

)∣∣∣∣∣
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Fig. 7. The support polyhedron,Rf , contributed by an active back facetf . Rf is defined by the verticesvj , vk , vij , vik , v′
j
,

andv′
k
.

= 1

3

∣∣∣∣∣a(4)f h3 +
(
b
(4)
f +

3∑
j=1

(Qj · N j )a
(j)

f

)
h2

+
(
c
(4)
f +

3∑
j=1

(Qj · N j )b
(j)

f

)
h+

3∑
j=1

(Qj · N j )c
(j)

f

∣∣∣∣∣.
Therefore,

active-volumef (h)= af h
3 + bf h

2 + cf h+ df , (6)

for some coefficientsaf , bf , cf , anddf that depend only on the coordinates of the vertices off .

Case 2. f is a back facet of P (Fig. 7).
In this caseRf is bounded by the following facets:

S1: 〈vik, v′
k, vk〉

S2 = f +: 〈vik, vk, vj , vij 〉
S3: 〈vij , vj , v′

j 〉
S4: 〈vj , vk, v′

k, v
′
j 〉

S5: 〈vij , v′
j , v

′
k, vik〉

Table 4 showsN j and the pointQj for each facetSj . Again, we have chosenQj such that subsequent
calculations become simple.

Note that all the dot productsQj · N j , except forQ5 · N5, depend only onf (andd , which is fixed);
the dot productQ5 · N5 = −h. We now generate an expression for eacharea(Sj ).
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Table 4

Facet PointQj NormalNj

S1 vk d × (vi − vk)/|d × (vi − vk)|
S2 vk −nf

S3 vj d × (vj − vi )/|d × (vj − vi )|
S4 vj d × (vk − vj )/|d × (vk − vj )|
S5 v′

k −d

Expression for area(S1):
Consider the vertical projection,v′′

k , of vk on the plane passing throughvi and parallel toH .8

FacetS1 is simply the triangular portion of〈vi, vk, v′′
k 〉 lying aboveH . From the proof of

Lemma 3.1

area(S1)= (h− zk)
2 · area(〈vi, vk, v′′

k 〉)
(zi − zk)(zi − zk)

,

wherearea(〈vi, vk, v′′
k 〉)= |(vi − vk)× (v′′

k − vk)|/2, andv′′
k − vk has components(0,0, zi − zk).

It follows thatarea(S1) can be written in the form

area(S1)= a
(1)
f h2 + b

(1)
f h+ c

(1)
f , (7)

for some coefficientsa(1)f , b(1)f , andc(1)f that depend only on the coordinates of the vertices off .9

Expression for area(S2):
From the proof of Lemma 3.1 it is immediate that

area(S2)= a
(2)
f h2 + b

(2)
f h+ c

(2)
f , (8)

for some coefficientsa(2)f , b(2)f , andc(2)f that depend only on the coordinates of the vertices off .

Expression for area(S3):
The discussion is identical to the one above forarea(S1), except that we use the projectionv′′

j of
vj on the plane passing throughvi and parallel toH . Therefore,

area(S3)= (h− zj )
2 · area(〈vi, vj , v′′

j 〉)
(zi − zj )(zi − zj )

,

wherearea(〈vi, vj , v′′
j 〉)= |(vi − vj )× (v′′

j − vj )|/2, andv′′
j − vj has components(0,0, zi − zj ).

It follows thatarea(S3) can be written in the form

area(S3)= a
(3)
f h2 + b

(3)
f h+ c

(3)
f , (9)

for some coefficientsa(3)f , b(3)f , andc(3)f that depend only on the coordinates of the vertices off .

8 Again, to avoid clutter, we do not showv′′
k in Fig. 7.

9 These coefficients are, of course, different from the ones we use in Case 1.
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Expression for area(S4):
FacetS4 is a trapezoid with parallel sidesvkv′

k andvjv′
j , of lengthszk−h andzj −h, respectively,

and height|v′
j v

′
k| = ((xj − xk)

2 + (yj − yk)
2)1/2. Therefore,

area(S4)= (∣∣vkv′
k

∣∣+ ∣∣vjv′
j

∣∣) · |v′
j v

′
k|

2
= −∣∣v′

j v
′
k

∣∣h+ ∣∣v′
j v

′
k

∣∣zj + zk

2
.

It follows thatarea(S4) can be written in the form

area(S4)= a
(4)
f h2 + b

(4)
f h+ c

(4)
f , (10)

wherea(4)f = 0, andb(4)f andc(4)f depend only on the coordinates of the vertices off .

Expression for area(S5):
Let fH be the vertical projection off on the planeH , with verticesv′

i , v
′
j , andv′

k , corresponding
to vi , vj , andvk , respectively. (Note thatvij andvik get projected to themselves.) Then

area(S5)= area(fH )− area
(〈
v′
i , vij , vik

〉)
.

Now area(〈v′
i , vij , vik〉) has already been computed in Case 1 (Eq. (5)). Moreover,area(fH )=

(((vj − vi )× (vk − vi )) · d)/2.
Since the former is quadratic inh and the latter is a constant, it follows thatarea(S5) is quadratic
in h. Thus,

area(S5)= a
(5)
f h2 + b

(5)
f h+ c

(5)
f , (11)

for some coefficientsa(5)f , b(5)f , andc(5)f that depend only on the coordinates of the vertices off .
From Eqs. (7)–(11) and the fact thatQ5 · N5 = −h, we have

active-volumef (h) = 1

3

∣∣∣∣∣
5∑

j=1

(Qj · N j )
(
a
(j)

f h2 + b
(j)

f h+ c
(j)

f

)∣∣∣∣∣
= 1

3

∣∣∣∣∣
4∑

j=1
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∣∣∣∣∣.
Therefore,

active-volumef (h)= af h
3 + bf h

2 + cf h+ df , (12)

for some coefficientsaf , bf , cf , anddf that depend only on the coordinates of the vertices off .
The lemma now follows if we sum the active-volume contributions of all front and back facets,
using Eqs. (6) and (12), respectively.



I. Ilinkin et al. / Computational Geometry 23 (2002) 117–151 137

We now discuss how to handle the other cases mentioned at the beginning of the proof. LetH

intersectf such thatf − is a quadrilateral andf + is a triangle. Iff is a back facet, then we
can use the discussion from Case 1 to compute the active-volume. Suppose thatzi > zj , zi > zk,
and the verticesvi , vj , andvk are in counterclockwise order with respect tonf . All the formulas
for the facet areas still apply. However, the directions of the normalsN j must now be reversed
(except forN2). Also, now Q4 · N4 = −h, and therefore the coefficients ofarea(S4) in the
active-volume formula must be taken with opposite signs.
If f is a front facet we use the discussion from Case 2 to compute the active-volume. Again,
suppose thatzi > zj , zi > zk, and the verticesvi , vj , andvk are given in counterclockwise order
with respect tonf . All the formulas for the facet areas still apply. However, the directions of the
normalsN j must now be reversed (except forN2). Also, nowQ5 · N5 = h, and therefore the
coefficients ofarea(S5) in the active-volume formula must be taken with opposite signs.✷

Next we obtain an expression for the inactive-volume.

Lemma 4.2. Let the plane H be at height h above the xy-plane. The total support volume contributed
by the inactive facets (i.e., the inactive-volume) is of the form Ch+D, where the coefficients C and D
depend only on the coordinates of the vertices of the inactive facets.

Proof. Let f be any inactive back facet with verticesvi = (xi, yi, zi), vj = (xj , yj , zj ), and vk =
(xk, yk, zk), wherezi � zj � zk; see Fig. 8. (The other cases are similar and discussed at the end of

Fig. 8. The support polyhedronTf = T const
f

∪ T var
f

contributed by an inactive back facetf . T const
f

is defined by the vertices

vi , vj , vk , v′′
j

, andv′′
k

. T var
f

is defined byvi , v
′
i
, v′
j
, v′
k
, v′′
j

, andv′′
k

.
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the proof.) We will prove that the support volume contributed byf is of the formcf h+ df where the
coefficientscf anddf depend only on the coordinates of the vertices off . This implies the result.

Sincef is an inactive back facet it will contribute to the support volume only ifH is belowf . Let v′′
j

andv′′
k be the projections ofvj andvk , respectively, on the plane passing throughvi and parallel toH .

Let v′
i , v

′
j , andv′

k be the projections ofvi , vj , vk , respectively, onH . We would like to find a formula for
the volume of the polyhedron,Tf , defined by the verticesvi , vj , vk , v′

i , v
′
j andv′

k .
Tf consists of two polyhedra. The first, denotedT const

f , is defined byvi , vj , vk , v′′
j , andv′′

k , and the
second, denotedT var

f , is defined byvi , v′
i , v

′
j , v

′
k , v

′′
j , andv′′

k . As long asH is belowf (i.e.,f is inactive),
the volume ofT const

f does not change whenH is moved. The volume,vol(T const
f ), of T const

f can, in fact,
be computed using Eq. (12) in Lemma 4.1, evaluated ath= zi .

The polyhedronT var
f is a prism with base〈vi, v′′

k , v
′′
j 〉, and heightzi − h. The volume,vol(T var

f ), of
T var
f can be computed as

vol
(
T var
f

)= area
(〈
vi, v

′′
k , v

′′
j

〉) · (zi − h),

wherearea(〈vi, v′′
k , v

′′
j 〉) is just the area of the vertical projection off onto the planez= zi , and depends

only on the coordinates of the vertices off . (It can also be computed using Eq. (11) in Lemma 4.1,
evaluated ath= zi.)

Let us denote byinactive-volumef (h) the support volume contributed by an inactive facetf , with
respect to the planeH : z= h. Then

Table 5
Minimum support volume for convex polyhedra generated from random
points on a sphere of radius 100. Here “non-decomp. volume” refers to
the support volume when the polyhedra are built without decomposition;
observe the significant reductions achieved via decomposition. Note that
the support volume without decomposition is roughly equal to the volume
under the lower hemisphere, as it should be

Support volume

#verts min hmin run time non-decomp.
n volume (s) volume

20,000 2.7 −0.17 4.1 1,046,037.3

40,000 1.0 0.02 8.2 1,047,241.1

60,000 0.6 −0.08 12.6 1,047,256.4

80,000 0.3 −0.04 16.7 1,047,234.3

100,000 0.3 0 20.9 1,047,201.5

120,000 0.2 0.03 25.5 1,047,197.6

140,000 0.2 −0.02 29.7 1,047,167.5

160,000 0.1 0 34.1 1,047,192.4

180,000 0.1 0.02 37.9 1,047,188.5

200,000 0.1 −0.03 43.2 1,047,200.0
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Table 6
Minimum support volume for convex polyhedra generated from random points on a
cone; each polyhedron has been rotated by the indicated angle to make it non-symmetric
about the origin. Here “non-decomp. volume” refers to the support volume when the
polyhedra are built without decomposition; observe the significant reductions achieved
via decomposition

Support volume

#verts angle min hmin mean run non-decomp.
n volume time (s) volume

20,001 200 10,999.5 −21.1 4.2 965,039.4

37 26,389.1 21.5 1,107,383.9

40,001 40 24,003.9 21.2 8.6 947,591.6

75 3,631.2 −4.4 994,452.0

60,001 240 12,900.6 −4.1 12.7 815,518.8

112 8,118.6 2.4 865,432.8

80,001 80 1,359.2 −4.2 17.3 1,014,386.0

150 20,249.8 −24.6 887,435.1

100,001 280 1,349.3 −4.2 21.5 1,014,432.7

187 1,068.5 −10.7 1,033,711.3

120,001 120 12,892.3 −4.1 25.8 815,171.4

225 13,784.8 −19.8 767,197.8

140,001 320 22,932.9 21.4 30.3 948,013.1

263 549.0 3.2 959,299.2

160,001 160 10,760.1 −21.2 34.7 962,983.8

300 12,908.9 4.0 849,211.7

180,001 0 0 1.7 39.5 2,128,798.5

338 14,356.3 21.2 1,754,483.3

200,001 200 10,749.7 −21.2 43.6 962,390.9

15 6,736.2 17.2 1,952,343.8

inactive-volumef (h) = vol
(
T var
f

)+ vol
(
T const
f

)
= area

(〈
vi, v

′′
k , v

′′
j

〉) · (zi − h)+ vol
(
T const
f

)
= cf h+ df , (13)

for some coefficientscf anddf that depend only on the coordinates of the vertices off .
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Finally, if f is a front facet, then a symmetric discussion applies.
The lemma follows by summing the volume contributions of all inactive facets using Eq. (13).✷

4.1. The algorithm

The algorithm is similar to the one in Section 3.1. We sweep the planeH upwards, visiting the vertices
in sorted order and at each vertex update the active-volume and inactive-volume terms based on the
facets incident to the current vertex. The three cases outlined in the algorithm in Section 3.1 hold here
as well, except that all references to the active-area and inactive-area terms are now to the active-volume
and inactive-volume terms, respectively. At each vertex we minimize the sum of the active-volume and
inactive-volume terms (hence the total support volume) as the position,h, of H ranges between the
z-coordinates of the current vertex and the next one. This gives the optimal position forH between
successive vertices. We repeat this for all vertices to find the globally-best position forH .

Theorem 4.1. The support volume version of Problem 2.1can be solved in O(n logn) time for a convex
polyhedron P with n vertices (O(n) time if the vertices are given in sorted order in the decomposition
direction d).

Proof. Similar to the proof of Theorem 3.1.✷
4.2. Experimental results

We have also implemented the above support volume minimization algorithm. The details of the
implementation and the test polyhedra are the same as in Section 3.2. Tables 5 and 6 summarize our
results.

5. Decomposing non-convex polyhedra

We assume hereafter thatP is a non-convex polyhedron. Such polyhedra pose problems that are not
encountered in the convex case. First, unlike the convex case, supports need not extend all the way to
the platform, but instead may terminate at some other point on the polyhedron itself. Furthermore, it is
possible that only part of a facet is in contact with supports, unlike the convex case where either the
entire facet or no part of it is in contact with supports. Finally, it is possible that parallel facets are also in
contact with supports, either fully or partially. Fortunately, despite these problems, it is possible to handle
a non-convex polyhedron in a fashion similar to the convex case, after doing some initial processing on
it.

For now, we ignore the issue of controlling the number of pieces in the decomposition; we discuss this
in Section 5.7. Furthermore, for concreteness, we focus on the contact-area version of Problem 2.1. (In
fact, the volume problem is easier, because parallel facets do not contribute to support volume – as they
do to contact-area – and, therefore, can be essentially ignored.)
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5.1. Overview of approach

The main idea is to partition each front or back facet ofP into two classes of triangles, called black
and gray triangles. (One of these classes may be empty.) A black trianglet will always be completely
in contact with supports, regardless of the position of the decomposition planeH ; therefore, it always
contributes a fixed amount,area(t), to the total contact-area and so can be ignored for minimization
purposes. However, a gray trianglet will contribute anywhere between zero andarea(t) to the total
contact-area, depending on the position ofH , and so needs to be accounted for.

Parallel facets are treated a little differently. A parallel facet ofP is partitioned into three classes
of triangles, called black, gray, and white. (Up to two of these classes may be empty.) Black and gray
triangles have the same interpretation as above. A white triangle will never be in contact with supports,
regardless of the position ofH , and so can be ignored for minimization purposes.

From the above discussion it is clear that only gray facets are relevant to the minimization problem.
As we will see, these can be handled using the approach in Section 3.

5.2. Black, gray, and white triangles

We next define formally the different types of triangles and establish their stated properties.
Let f be a front facet. Imagine that we buildP , without decomposition, in directiond . Consider the

supports (if any) that are in contact withf . Their footprint on f , i.e., their intersection withf , is a
collection of polygons, which we will callblack polygons. We triangulate the black polygons off to
obtain the set,Bf , of black triangles associated withf . Letp be any point in some black triangle. Since
p is in contact with supports for build directiond, the rayrp, emanating fromp in this direction must
intersectP . If p′ is the first intersection ofrp andP – not countingp – then the segmentp′p is the
support forp′. (Informally, p is in contact with supports because some part ofP , i.e., p′, is directly
abovep in directiond .) The complement of the black polygons onf is a collection ofgray polygons,
and the set,Gf , of gray triangles associated withf is obtained by triangulating the gray polygons. No
point in a gray triangle is in contact with supports for build directiond.

Now, suppose that we buildP with decomposition. Lett be a black triangle inBf . Assume that the
decomposition planeH intersectst , and lett− andt+ be the parts oft above and belowH , respectively.
That is,t− ∈ P− and t+ ∈ P+. Now, all of t− will require support since it belongs to the front facetf ,
andP− is built in direction−d. The polyhedronP+ is built in directiond, and, furthermore, the part
of P+ that is directly abovet+ is the same as the part ofP that would be directly abovet+ if P were
built without decomposition in directiond. Sincet is a black triangle,t+ is in contact with supports for
directiond in the case without decomposition, and, hence, also in the case with decomposition. Thus, all
of t is in contact with supports.

If H is completely abovet , then t+ = ∅ and t− = t ; if H is completely belowt , then t− = ∅ and
t+ = t . In either case, the above argument still applies. It follows that regardless of the position ofH , if
t is a black triangle, then all of it is in contact with supports. Thus, black triangles may be ignored.

On the other hand, suppose thatt is a gray triangle inGf , wheref is a front facet. Assume thatH
intersectst . As in the case of a black triangle, the partt− ∈P− will be in contact with supports. Consider
the partt+ ∈ P+, which is built in directiond. No part oft+ will be in contact with supports, since in
the case whereP is built in directiond , without decomposition, no part oft is in contact with supports.
If H is completely below or completely abovet , then eithert is not in contact with supports at all or
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is completely in contact with supports. Therefore, it follows thatt ’s contribution to the total contact-
area depends on the position ofH . In fact, this contribution is exactly the same as for a front facet in
the convex case. That is, ift is inactive, then its contribution is zero orarea(t); if t is active, then its
contribution is a quadratic function of the position,h, of H , as in Section 3.

So far, we have considered the case where the facetf ∈ P is a front facet. Iff is a back facet ofP
then we define the black and gray triangles onf by buildingP , without decomposition, in direction−d.
Then a discussion symmetric to the one above again shows that, in the case with decomposition, only
gray triangles need be considered.

Finally, we turn to the case wheref is a parallel facet. Suppose that we buildP without decomposition
in directiond , and, independently, in direction−d . Theblack polygons consist of all points onf that
are in contact with supports for both directions. Thegray polygons consist of all points onf that are in
contact with supports for exactly one of the two directions. Thewhite polygons consist of all points on
f that are not in contact with supports for either of the two directions. By definition, these polygons
partition f . The setBf (respectivelyGf , Wf ) of black (respectively gray, white) triangles onf is
obtained by triangulating the black (respectivelygray, white) polygons.

Now suppose that we buildP with decomposition. It is easy to see that regardless of the position
of the decomposition planeH , a black triangle will always be in contact with supports, while a white
triangle will never be in contact with supports. Therefore, both these types of triangles may be ignored.
However, a gray triangle will contribute to the contact-area an amount which depends on the position of
H . For instance, lett ∈Gf be a gray triangle which exists becausef is in contact with supports when
P is built, without decomposition, in directiond. Then, in the case with decomposition,t+ is in contact
with supports andt− is not. So the contribution oft to the total contact-area varies quadratically with the
position,h, of H , from zero toarea(t). So, again only gray triangles need to be considered.

5.3. Computing black and gray triangles for front and back facets

We discuss how to to compute the footprint of the supports on each front facet, hence the black and
gray triangles on it.

We will use a technique calledcylindrical decomposition [29]. From each edge,e, of each back
facet,b, we erect a strip,Ve,b, which passes exactly throughe and extends vertically downwards, in
direction−d . As soon as a part ofVe,b intersects another facet ofP (which must be a front facet), we
stop propagating that part below the intersected facet; however, we continue propagating the remaining
parts ofVe,b.10 Each such intersection ofVe,b with a front facet will be a part of the footprints that we are
trying to compute.

To perform this step efficiently, we compute the intersection of each front facet withVe,b to get a
set,L, of line segments. (Since the facets ofP do not intersect each other, the segments inL are non-
crossing, but possibly touching.) We do a trapezoidal decomposition [13] ofL∪ {e} in the plane ofVe,b.
We identify each trapezoid in this decomposition that is adjacent toe at the top and to a line segment
� ∈ L at the bottom. The bottom edge of this trapezoid is one of the sought intersections ofVe,b with a
front facet. We store this edge with the front facet that generated�.

However, not all footprints on front facets will be discovered by the above process. For instance, if the
projection ofb completely covers a front facet,f , below it, then none of the stripsVe,b erected fromb

10 The process resembles water cascading down frome.
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will intersectf , and, yet, supports forb will rest on f . To handle such situations, we also erect from
each edge,e, of each front facet,f , a stripVe,f vertically upwards, stopping the propagation of any part
of the strip as soon as it intersects a (back) facet above it, while continuing to propagate other parts. To
compute these intersections we do a trapezoidal decomposition of the setL′ ∪ {e}, whereL′ contains the
intersections of all the back facets withVe,f . For each trapezoid in this decomposition that is incident toe

at the bottom and to a segment�′ ∈ L′ at the top, we take the top edge of the trapezoid as the intersection
of Ve,f with the back facet that generated�′, and store it with that back facet.

After we have carried out the above steps for all front and back facets, we have associated with each
facet a list of line segments corresponding to intersections of the different vertical strips with the facet.
Since a strip is not propagated below an intersected facet, it is easy to see that the line segments associated
with a facet are non-crossing (but may be touching). For each facet, we compute the arrangement [13] of
the set consisting of the associated segments and the edges bounding the facet.

Let f be any front facet and letc be any cell of the arrangement computed onf . Then c is the
footprint of a support onf for build directiond, hence a black polygon, iff there is a cellc′ on a back
facetb abovef , such thatc′ projects exactly toc. (The cellsc andc′ form the bottom and top facets of a
support cylinder; the other facets of this cylinder are vertical and bounded below and above by edges of
c andc′.) Any other cell off is a gray polygon.

We can identify the black triangles off directly (instead of first computing the black polygons). We
project the arrangement on each front facet to thexy-plane, triangulate its cells, and then lift the triangles
back to the front facet. We make a list,F , of these lifted triangles along with their centroids, and sortF

lexicographically on thex-, y-, andz-coordinates of the centroids, taken in that order. We make a similar
sorted listB for the the back facets. Note that if a cell,c, from a front facet and a cell,c′, from a back
facet form the bottom and top facets of a support cylinder, thenc andc′ have identical projections on
thexy-plane and will, therefore, be triangulated identically (if a deterministic triangulation algorithm is
used, e.g., [13, Chapter 3]). It should be clear now that a simultaneous scan of the two sorted lists suffices
to identify matching pairs of triangles, where one triangle is fromB and the other is fromF such that
the former is above the latter and projects exactly to it. For each matching pair, the triangle fromF is a
black triangle on some front facet; all unmatched triangles ofF are gray triangles on front facets. (This
approach for matching triangles, using a lexicographic sort, is due to [11].)

In this way, we can compute all the black and gray triangles for each front facet. A symmetric approach
yields the black and gray triangles for the back facets.

Lemma 5.1. The set of black and gray triangles for all front and back facets of an n-vertex polyhedron
P can be computed in O(n2 logn) time.

Proof. Correctness is clear from the discussion above. We establish the running time.
The number of line segments generated by intersecting front facets with any stripVe,b is O(n), so

their trapezoidal decomposition has size O(n) and can be computed in time O(n logn) per strip, hence
O(n2 logn) for all strips.

The total number of segments (intersections) created on all the front facets ofP by the propagation of
anyVe,b is O(n). This is because the trapezoidal decomposition has O(n) trapezoids and the segments of
interest are the bottom edges of a subset of these trapezoids. Since there are O(n) Ve,b’s, the total number
of segments generated by them on all front facets is O(n2).
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Now, consider a front facet,f , and letmf be the total number of segments onf taken over all
stripsVe,b. By the above discussion,

∑
f mf = O(n2). (Note thatmf could be.(n2) for an individual

facetf . This could happen if, for instance,.(n) back facets are abovef and overlap in the form of
a trellis. However,

∑
f mf is still O(n2).) As noted earlier in the discussion of the algorithm, since

a strip is not propagated below an intersected facet, the segments onf are non-crossing; thus, their
arrangement has complexity O(mf ). It can be computed and triangulated in time O(mf logmf ), and
yields O(mf ) triangles. Taken over all front facets, there are O(

∑
f mf ) = O(n2) such triangles, and

they can be generated and sorted in time O(
∑

f mf logmf ) = O(n2 logn). Likewise for the triangles
from all the back facets. The resulting lists of O(n2) triangles each can be scanned in O(n2) additional
time to determine the black and gray triangles.✷
5.4. Computing black, gray, and white triangles for parallel facets

Let f be a parallel facet. Recall that a black (respectively gray, white) triangle onf is one which is
in contact with supports for both (respectively exactly one, neither) of the directionsd and−d. Let Vf
be the vertical strip which is in the plane off and exactly contains it. We may assume without lost of
generality that no vertex off is in the interior ofVf . (Each bounding line ofVf contains at least one
vertex off . If there is a vertex in the interior ofVf , we draw a vertical line through it and splitf into
two facets that each satisfy the assumption.) Let vertexu of f lie on one of the bounding lines ofVf and
let verticesv andw lie on the other, withv abovew in directiond; note that the line segmentsuv and
uw spanVf . Consider the back facets ofP that either pierceVf aboveuv, or touchVf aboveuv and are
in the same halfspace ofVf as the outer unit-normal,nf , of f . (These are the back facets whose supports
are potentially in contact withf whenP is built in directiond .) The intersections of these back facets
with Vf is a set,A, of line segments. We do a trapezoidal decomposition ofA in the plane ofVf (note
that we do not consider the edges off when doing the decomposition). LetT be the set of trapezoids in
this decomposition that are bounded from above by some segment ofA and are unbounded below. LetTf
be the trapezoids obtained by intersecting the ones inT with f . (Strictly speaking, some of the elements
in Tf may be triangles, which we take to be degenerate trapezoids.)

Fig. 9 illustrates the computation ofTf . Fig. 9(a) shows the back facets,b1, b2, b3, andb4, that pierce
or touchVf aboveuv: b1 andb4 pierceVf , b2 touchesVf and is in the same halfspace ofVf asnf , and
b3 touchesVf but is in the halfspace ofVf that does not containnf . The supports needed byb3 will not
be in contact withf , so we ignore it. The setA consists of the line segmentsa1, a2, anda4. Fig. 9(b)
shows the trapezoidal decomposition ofA. The trapezoids ofT aret1, t2, andt4; their intersections with
f , shown shaded, yields the setTf .

Symmetrically, we consider the front facets ofP that intersectVf at or belowuw. These intersections
yield a set,A′, of line segments. We do a trapezoidal decomposition ofA′, take the setT ′ of trapezoids in
this decomposition that are bounded from below by some segment ofA′ and are unbounded above, and
intersect these withf to get a setT ′

f of trapezoids.
The set of black polygons forf is obtained by taking the intersections of every pair of trapezoids,

one inTf and the other inT ′
f . Any part of a trapezoid inTf or T ′

f that is not a black polygon is a gray
polygon. The complement of the union of the gray and black polygons onf is the set of white polygons.
We can compute these three classes of polygons easily by sorting the vertical edges inTf andT ′

f into two
lists and then doing a simultaneous scan of the two lists. Since these polygons are actually trapezoids, we
can generate the corresponding triangles easily.
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Fig. 9. Computation of the setTf (shown shaded) for a parallel facetf .

Lemma 5.2. The set of black, gray, and white triangles for all parallel facets of an n-vertex polyhedron
P can be computed in O(n2 logn) time.

Proof. The correctness of the method is clear from the above discussion. For the running time, note
that the setsA andA′ each have size O(n) and can be computed in O(n) time. Doing the trapezoidal
decomposition and computingTf andT ′

f takes O(n logn) time. Finally, sorting and scanning the lists
and computing the different polygons takes O(n logn) time. Therefore each of the O(n) parallel facets
can be handled in time O(n logn), and the lemma follows. ✷
5.5. Decomposing to minimize contact-area

At this point, we have for each front, back and parallel facet ofP , a list of the black, gray, and white
polygons. As discussed in Section 5.2, only the gray triangles are relevant when decomposingP to
minimize the contact-area of supports. We store the subdivision defined by the union of the set of gray
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triangles in a doubly-connected edge list and perform a sweep over them as in Section 3 to compute
the optimum decomposition planeH . (Even though the algorithm in Section 3 is for convex polyhedra,
the sweep does not depend on convexity per se, and so it works for our collection of gray triangles as
well.)

As seen above, the set of gray triangles can be computed in time O(n2 logn). Also, from the proofs of
Lemmas 5.1 and 5.2, the number of gray triangles is O(n2). The time to sort the vertices of the induced
subdivision byz coordinates, in preparation for the sweep, is O(n2 logn). During the sweep, each vertex
can be processed in time proportional to its degree, which implies a time bound of O(n2) for processing
all vertices, since the subdivision has O(n2) edges.

As noted at the beginning of Section 5, the volume minimization problem is easier, and essentially the
same approach works for this also. We will see in Section 5.7 that the size of the decomposition can be
controlled in O(n logn) time. We conclude:

Theorem 5.1. The contact-area and support volume versions of Problem 2.1can be solved in O(n2 logn)
time for a non-convex polyhedron P with n vertices.

5.6. Experimental results

Our primary goal was to investigate the extent of support reduction achievable via decomposition
of typical models. Therefore, for convenience, we implemented a simpler, but slower, version of the
algorithm described above, for support volume minimization. The algorithm differs mainly in how the
footprints are computed – instead of using the earlier algorithm for cylindrical decomposition, we use a
somewhat less efficient approach, as follows.

Letf be a fixed front facet and letb be any back facet. We projectf andb to thexy-plane and compute
the intersection of their projections (i.e., triangles), which yields a convex polygon,C(b). If C(b) �= ∅,
then letp be any point in it, say the centroid. If the pre-images,pf andpb, of p onf andb, respectively,
are such thatpb is abovepf in directiond, thenpf is in contact with supports. This implies that the
pre-imageCf (b) of C(b) on f is in contact with supports. This follows since no facet ofP pierces
another, so there cannot be another pointp′ in C(b), whose pre-images onf andb are in the opposite
order from those ofp. (Note that it need not be the case that the cylinder bounded byCf (b) and byCb(b)
– the pre-image ofC(b) on b – is a support cylinder, sinceb, or parts thereof, need not be immediately
abovef ; there could be parts of other back facets in between.) Given the polygonsC(b) that are found
to be in contact with supports, we can compute the footprint of supports onf by taking the union of
the pre-images,Cf (b), of these polygons. (In our implementation, we used the functions provided by
LEDA [28] to perform the union and intersection operations.) We triangulate the footprint (respectively
the complement of the footprint) onf to get the black (respectively gray) triangles onf . We handle
back facets in a symmetric fashion, using direction−d instead ofd . Thereafter, we apply the sweep-
based algorithm on the set of all gray triangles to compute the optimum position of the decomposition
plane.

The most expensive part of this algorithm turns out to be the union step in the computation of the
footprints. Note that the algorithm simply projects all back facets down to thexy-plane, without regard
to any intervening facets. Thus, the complexity of the union of the polygonsC(b) on a single front facet,
f , can be.(n2) in the worst case, and.(n3) over all front facets. (An example of this is a configuration
of .(n) front facets stacked on top of each other and.(n) back facets above them that overlap in the
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Fig. 10. Non-convex models tested. Here “z-span” denotes the span of coordinates in thez-direction; it is given to help visualize
the position,hmin, of the decomposition plane. The decomposition direction,d, points vertically upwards.

form of a trellis. Notice that this situation would not create a problem for cylindrical decomposition,
since there we do not project through intervening front facets.) The total time to compute the union is
O(n2 logn) in the worst case for any front facet [13], hence O(n3 logn) over all front facets.

We performed our experiments on the six models shown in Fig. 10. The first five models were obtained
from Stratasys, Inc., a Minnesota-based company specializing in LM. To keep the running time of our
algorithm on these models reasonable, we reduced the number of facets in some of the larger models
– specifically,0-2190.stl (to about 25% of its original number),speedo.stl (to about 15%),
andengine2.stl (to about 18%). For this we used theDecimator software package fromRaindrop
Geomagic, Inc., a North Carolina-based company specializing in the design of CAD software. This
package reduces model sizes while preserving the original topology to the maximum extent possible.
The sixth model,cc.stl, was hand-generated; it is used to show that on some models our algorithm
may not achieve any reduction in support requirements.

Table 7 summarizes our experimental results for the six models. To give an idea of the relative sizes
of the models, the table also gives the dimensions of their axes-parallel bounding boxes. The models are
listed in the table in decreasing order of the reduction in support volume that is achieved (the sixth column
divided by the fourth). On the first four models, our algorithm achieved a reduction ranging from a factor
of seven to about a factor of four. On the fifth model, it achieved a reduction of about 1.4. It achieved no
reduction at all on the last model,cc.stl, which is essentially a hollow cube, with walls of thickness 1
and with four holes on the top face. If this model is built without decomposition, the interior of the cube
will be filled with supports, except for the regions directly below the holes. Any decomposition plane
that intersects the model strictly above the inner base (which is at height 1), will generate two pieces for
which the total support volume is higher than without decomposition, since the region in the lower piece
that was originally below the holes is now filled with supports. The optimal position for decomposition
is any height in the interval[0,1].
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Table 7
Experimental results for non-convex models. Experiments were performed on a SUN Ultra 60 Sparc machine with 512 MB of
main memory and a 450 MHz processor

model # facets min hmin non-decomp. run bounding box
volume volume time (s) l ×w× h

1 0-2190.stl 3,492 0.1 0.0 0.7 16,661 1.4× 1.5× 1.4

2 speedo.stl 2,500 0.9 1.9 5.1 15,730 2.0× 1.9× 3.2

3 mj.stl 2,832 1.7 2.1 8.1 13,911 2.8× 4.6× 3.2

4 r59043b.stl 3,386 0.8 0.4 3.0 20,833 2.4× 2.1× 1.4

5 engine2.stl 4,180 174.9 1.3 251.6 41,156 12.1 × 6.2× 9.7

6 cc.stl 112 823,210.0 1.0 823,210.0 4.7 102.0 × 102.0× 100.0

5.7. Controlling the size of the decomposition

The optimal plane computed by the algorithm in Section 5.5 could decompose a non-convex
polyhedronP into many polyhedra (as many as.(n) in the worst case), which is undesirable since
it increases the cost of re-assemblingP . Ideally, the designer should be able to specify an integerK , and
the algorithm should compute, among along all possible planes that generate no more thanK polyhedra, a
plane which is optimal with respect to support contact-area or volume. We show how this can be done by
incorporating a preprocessing step in the algorithm. The idea is to partition thez-axis into O(n) intervals,
Ij , such that all planes whose heights are inIj decomposeP into the same number,kj , of polyhedra. We
then run the sweep algorithm of the previous section but do the minimization step only in those intervals
Ij for which kj �K .

Let z1 < z2 < · · ·< zt , t � n, be the distinctz-coordinates of then vertices ofP . The preprocessing
involves two sweeps. The first sweep is in the positivez direction and it computes a set of intervals on
the z-axis and associates with each interval an integer which is the number of connected components
of P− generated by any plane whose height is in the interval. Observe that the number of connected
components ofP− with respect to a plane of heightzj is the same as the number with respect to a plane
whose height is anywhere in the interval(zj , zj+1); let this number bek−

j . Thus, the first sweep computes
intervals of the form[zj , zj+1) and associates with each the integerk−

j . Symmetrically, the second sweep
is in the negativez direction and it computes intervals of the form(zj , zj+1] and associates with each an
integerk+

j , which is the number of connected components ofP+ with respect to any plane whose height
is in (zj , zj+1]. Once these two sets of intervals have been computed, a single scan of them suffices to
compute the desired intervalsIj and the corresponding integerskj . Specifically, each intervalIj is either
of the form[zj , zj ], with kj = k−

j + k+
j−1, or of the form(zj , zj+1), with kj = k−

j + k+
j .

We describe the first sweep in more detail. At any time, the vertices of the different connected
components ofP− form a collection of disjoint sets. We maintain these using a Union-Find-Makeset
data structure [12]. We initialize the structure to empty and set the current number,c, of connected
components ofP− to zero. Letzj be the currentz-coordinate in the sweep and letVj be the set of
vertices ofP at thisz-coordinate. We consider each vertexv ∈ Vj in turn and process it as follows. We
create a new set containing justv and incrementc by one. Then for each neighbor,u, of v such thatu
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is already in the Union-Find-Makeset data structure we do the following. Ifu and v are in different
connected components, then we union the sets containingu andv, and decrementc by one. Notice that
in this sweep, we only “add” edges toP−, so the connected components ofP− always merge, never split.
Thus, a Union-Find-Makeset structure suffices to maintain the connected components ofP−. After all
vertices ofVj have been processed, we setk−

j to c. At the end of the sweep, all the intervals[zj , zj+1),
and their associated integersk−

j will have been computed.
Excluding the O(n logn) time for the sorting, the algorithm takes O(nα(n)) time, whereα(n) is the

slow-growing inverse Ackerman function. Hence this preprocessing step does not affect the asymptotic
running time of the decomposition algorithm of Section 5.5.

6. Conclusions and future work

In this paper, we have presented a new approach to LM, in which the model is decomposed by a
plane into several pieces that can be built independently and then glued together. Several advantages of
this approach have been identified, including improved speed, greater versatility, and reduced support
requirements. We have presented efficient geometric algorithms to decompose both convex and non-
convex models so as to minimize the contact-area and the volume of the supports (Problem 2.1). For
convex models, the algorithms are based on the plane sweep paradigm, where formulas for support
contact-area and volume are generated, updated, and optimized as a function of the height of the sweep
plane. Non-convex models are handled by first identifying certain critical facets that are relevant to the
minimization and then using the same approach as in the convex case. Experimental results have been
given that demonstrate the utility of the decomposition-based method.

There are actually four versions of Problem 2.1 depending on how we choose to buildP+ andP−:
(1) P+ andP− in directionsd and−d, respectively – the version solved in the paper; (2)P+ andP− in
directions−d andd, respectively; (3)P+ andP− in directionsd andd, respectively; and (4)P+ and
P− in directions−d and−d, respectively. For a given model,P , the support requirements of one of the
methods might be better than the other three. For instance, letP consist of two pyramids, with a common
vertexv (i.e., one pyramid is a reflection of the other throughv), and letd be perpendicular to the base
of one pyramid. If we choose the decomposition planeH such that it containsv, then method 2 would
require no supports. For any choice ofH , the other three methods would require a non-zero amount of
supports. Given a model, one strategy would be to run all four methods independently and pick the one
which minimizes the support requirements.

For convexP , the solutions for methods 2–4 are similar to that for method 1. For contact-area
minimization, method 2 is completely symmetric to method 1. In method 3 (respectively method 4),
only back (respectively front) facets need supports, regardless of the position ofH ; thus, the support
contact-area equals the total area of the back (respectively front) facets, so any position ofH is optimal.
The situation is similar for support volume minimization, except that the platform forP+ and/orP− need
no longer beH . For instance, in method 2, the platform forP+ (respectivelyP−) is the plane parallel to
H and coinciding with the extreme vertex in directiond (respectively−d), so the support volume needs
to be computed with respect to this platform rather than with respect toH . Similar statements apply to
methods 3 and 4. In these methods, even though only back or front facets need supports, the position
of H does affect the support volume (unlike contact-area); the optimal position forH can be found by
minimizing the expression for the total support volume, as in method 1.
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Unfortunately, the approach in Section 5 (where facets are decomposed into black, gray, and white
triangles) does not extend to methods 2–4 whenP is non-convex. Consider, for instance, method 2.
Let t be a black triangle from a front facet and assume thatH intersectst . Now, t+ is completely in
contact with supports, since it is built in direction−d. However, the structure of the supports that will
be in contact witht− depends on the (yet-to-be-built) portion ofP− that is aboveH , which can be quite
complex. (This problem did not arise in method 1, for reasons discussed at the beginning of Section 5.2.)
Similar problems arise in method 3 for a black triangle belonging to a front facet and in method 4 for a
black triangle belonging to a back facet. At present, we do not know how to overcome these difficulties
and it appears that a different approach will be needed.

Throughout the paper, we have assumed a fixed decomposition directiond and found an optimum
plane that is normal tod. A challenging next step is to consider the problem of computing, over all
directionsd , an optimum decomposition plane (while also limiting the number of pieces). The methods
developed in this paper could be useful in computing such a plane once a small set of candidate directions
has been identified.
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